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ABSTRACT
This paper presents a design strategy of chiplet-based processing-
in-memory systems for deep neural network applications. Mono-
lithic silicon chips are area and power limited, failing to catch
the recent rapid growth of deep learning algorithms. The paper
first demonstrates a straightforward layer-wise method that parti-
tions the workload of a monolithic accelerator to a multi-chiplet
pipeline. A quantitative analysis shows that the straightforward sep-
aration degrades the overall utilization of computing resources due
to the reduced on-chiplet memory size, thus introducing a higher
memory wall. A tile interleaving strategy is proposed to overcome
such degradation. This strategy can segment one layer to different
chiplets which maximizes the computing utilization. To facilitate
the strategy, the modification of the chiplet system hardware is
also discussed. To validate the proposed strategy, a nine-chiplet
processing-in-memory system is evaluated with a custom-designed
object detection network. Each chiplet can achieve a peak perfor-
mance of 204.8GOPS at a 100-MHz rate. The peak performance of
the overall system is 1.711TOPS, where no off-chip memory ac-
cess is needed. By the tile interleaving strategy, the utilization is
improved from 53.9% to 92.8%.
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1 INTRODUCTION
The recent rapid growth of artificial intelligence (AI) algorithms
drives a sharp increase of deep learning processors’ (DLP) comput-
ing power, from few GOPS to tens of TOPS. On the other hand, the
computing density of silicon chips is saturating due to the dark sili-
con phenomenon [1]. Therefore, area expansion becomes the major
knob filling the gap. The areas of state-of-the-art DLP chips are ap-
proaching the limits of lithography [2], around 700-800 mm2 under
12-nm FinFET technology. The on-chip SRAM size is also enor-
mous, reaching 192 MB. Unfortunately, it is neither cost-efficient
nor robustness-guaranteed to design such huge chips. Given the
same probability of defects, every time the chip area doubles, the
yield loss doubles as well. In addition, non-recursive engineering
(NRE) cost is also escalating and intolerable for mass production of
these chips.

There are two technical trends to solve the problem. The first is
to increase the energy efficiency of DLPs by using processing-in-
memory (PIM) designs [3]. PIM architectures can complete com-
puting inside the weight memories by adopting analog and mixed-
signal based computing. The second trend is a chiplet-based inte-
grated system consisting of multiple chips [4]- [6]. The key ben-
efit of the chiplet-based systems is twofold. It is heterogeneous
technology-friendly, where processors and mixed-signal IPs can
be fabricated under different technology. Also, the system demon-
strates good scalability by deploying homogeneous chips of differ-
ent numbers. Such scalability paves the way to catch up with the
AI algorithm speed without the cost and fabrication limits.

Chiplet-based PIM systems, illustrated in Fig. 1, are likely a
promising solution of next-generation DLP architectures in terms
of both energy efficiency and memory wall. However, efficient
mapping strategies for such systems have not been investigated.
Compilation strategies for general-purpose many-core chiplet sys-
tems are still obscure, although a 4096-core RISC-V chiplet system
has already been developed [7]. A cross-layer mapping scheme
for chiplet-based digital DLPs is discussed in [8], but is not suit-
able for PIM scenarios. Moreover, the chiplet hardware requires
power-consuming overhead such as high-speed links. On the other
hand, state-of-the-art PIM mapping schemes focus on intra- and
inter-parallelism to improve neural network utilization [9]. How-
ever, their overall performance evaluation is over-optimistic and
inadequate for practical PIM hardware implementation.

In this paper, we present a design strategy for chiplet-based PIM
systems where a computing utilization enhancement scheme is
proposed to overcome the performance loss. The rest of the paper
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Figure 1: Monolithic vs. Chiplet-based PIM DLP systems

is organized as follows. Section II summarizes the recent related
works. Section III introduces the PIM partition techniques and
evaluates the performance loss quantitatively. The enhancement
scheme, known as tile interleaving, is detailed in Section IV. Section
V concludes the paper.

2 BACKGROUND AND RELATEDWORKS
Deep learning is a computing and memory-intensive application.
Traditional implementations are GPU based, which are energy-
inefficient and require large monolithic designs. Recent works ex-
plore efficient DLP implementation by investigating chiplet, PIM
architectures, and compilation techniques.

Chiplet-basedhighperformance architecture.Unlikemono-
lithic chips, chiplet-based architectures integratemultiplemicrochip
components into one package. Dies are connected via an inter-chip
network. Chiplets are used for many-core server CPUs [5] [10],
and heterogeneous multi-core system [11]. The chiplet intercon-
nections and the many-core network-on-chip (NoC) are similar.
For example, Adapt-NoC in [12] dynamically allocates NOC into
different regions.

Simba [6, 8] is a chiplet based scalable DLP architecture. Each
chiplet architecture is similar to conventional DLPs, except addi-
tional network routers and data links for data transfer. The archi-
tecture can support scalable systems from one chip to 36 chips.

PIM-basedNon-von-Neumannarchitecture.The performance
of conventional von Neumann architecture based DLPs is limited
by the communication bandwidth between the processor and the
memory. PIM architectures were first proposed to eliminate this bot-
tleneck by combining computing and storage into one device, such
as memristors [13]. The resistance of these cells can be modified
by memory write operations and can be performed multiplications
with an input voltage according to Ohm’s Law.

Another PIM architecture’s benefit is energy efficiency. Litera-
ture shows that PIM chips have already achieved 10-100x energy
efficiency than other DLP implementations [3]. The low-power
feature is due to the analog-computing circuits.

Neural networkmapping and compilation. Deploying deep
neural networks (DNNs) on the domain-specific hardware draws
much attention. For systolic array-based accelerators [14], DNNs
are commonly converted to matrix-matrix multiplication operation,
and the compilers map these operations onto the certain hardware.
In addition, edge devices require low power consumption and high
energy efficiency, where DDR links might not be available. Dedi-
cated and flexible data flow optimization [15] is adopted to exploit
the data reuse of DNNs and relieve the off-chip communication
bandwidth.

Figure 2: PIM-based DLP architecture.

Compilation strategies are highly hardware-specific. Even though
there are open-source general-usage DNN compilation tools such as
TVM[16], almost every new DLP architecture requires its own com-
pilation tool. Chiplet-based architectures require communication-
aware workload partition [8], while PIM-based architectures sup-
port much fewer data flows than conventional DLPs.

3 HOMOGENEOUS PIM PARTITION
This section introduces a baseline chiplet-based PIM system, which
is converted from a monolithic PIM processor.

3.1 Monolithic PIM Architectures
Previous DLP research introduced versatile data flow optimization
schemes to digital parallel architectures, such as input and row
stationary in [17]. These schemes exploit data reuse and greatly
compress memory access compared with basic SIMD architectures.
Some of these schemes can also be ported to PIM implementations,
further pushing the energy efficiency of DLPs [18].

Figure 2 shows a typical monolithic PIM-based DLP architecture,
where PIM array calculates matrix multiplication with low power
consumption. According to Ohm’s Law and Kirchhoff’s Laws, the
input vector of the PIM array interacts with the pre-stored data via
memristor arrays, simultaneously generating multiplication-and-
accumulation (MAC) results of multiple columns. Although PIM
has high energy efficiency and performance density, its data flow
mapping is not as flexible as SIMD architectures. Most non-volatile
memory devices used as PIMs, such as ReRAM and flash memory,
lack writing endurance, and have long latency for accurate writ-
ing. In other words, these cells can only be written within limited
times, making it difficult to frequently update these stored data
during the neural network inference computing. Therefore, fixed
weight placement is widely adopted in the PIM-based DLPs. Data
flows used in PIM architectures normally load the weights before
computing and keep them read-only during inference. The MAC
outputs of the PIM array are added to the intermediate results in an



Figure 3: A four-chiplet chiplet-based PIM system.

Accumulating Buffer, and the final MAC results are delivered to the
Post Processing Unit for normalization and non-linear activation.

To buffer the input and output activations, the accelerator is also
equipped with a large SRAM-based Activation Buffer. Because the
weights are fixed, the main memory wall of PIM designs is from
these inter-layer results. If there is no off-chip DRAM, these buffer
size should be greater than the maximum sum of layer input and
output. The typical buffer size is from hundreds of Kilobytes to few
Megabytes.

With the explosion of AI algorithms, the monolithic PIM-based
DLPs are mainly challenged by massive model weights, especially
for the fixed weight placement scheme. More state-of-the-art AI
algorithms require hundreds of Mega-byte or even Giga-byte room.

Cost-efficient monolithic DLP chips can hardly afford so many
weights of the entire network.

It is unacceptable to continuously expand the area of a single chip,
so partitioning large networks into multiple chiplets is expected to
meet this challenge.

3.2 Partition from Monolithic to Multi-chiplet
A chiplet-based DLP consists of multiple chips partitioned from the
original large DLP. Assuming that all units are identical, we call the
system a homogeneous one. Each chiplet has a similar architecture
to the monolithic one, but the sizes of PIMs and SRAM buffers are
scaled down by the partition. Because all weights are fixed place,
the data flow inside the chiplet system is a layer-wise pipeline.
In other words, every chiplet is expected to receive data from its
predecessor, compute the corresponding layers, and send out the
results continuously and simultaneously. A four-chiplet pipeline
system is illustrated in Fig. 3.

Figure 4: A modified Tiny-YOLO for case study.

The PIM chiplet should perform three types of tasks in parallel:
a) RX task: receive activations from the predecessor chiplets and
store them into the local buffer; b) COMP task: perform PIM-based
convolution or full-connection calculation with the local activations
and weights; and c) TX task: fetch the output activations from the
buffers and deliver them to the succeeding chiplets. Correspond-
ingly, a pair of receiver and transmitter are devised on each chiplet
and can work in a duplex.

In a multi-chiplet system, each chiplet can process one or few
layers of the entire network. In contrast with the monolithic design,
the limited capacity of the SRAM buffers and PIM macros on the
chiplet is confronted by more severe memory wall. Furthermore,
the chiplet pipeline requires a balanced latency of each chiplet.

Otherwise, the overall data flow might be stalled by unnecessary
bubbles. Moreover, the chiplet-based PIM systems need to solve an
additional synchronization problem.

The layer-wise pipeline (LWP) can be adopted for chiplet-based
DLP systems [9]. It directly divides the network into multiple seg-
ments, and the workload of each segment is roughly the same.
Each segment is allocated to one chiplet, so the overall system can
accelerate the network as a pipeline, which can improve the utiliza-
tion. In [8], a network of package (NoP) interconnect topology was
employed to form a 2D mesh in the chiplet system. This implemen-
tation introduces extra router design, increasing both energy and
latency.

3.3 Case Study I: A Four-chiplet PIM DLP
In order to quantitatively analyze the performance, we first build a
four-chiplet model as Fig. 3, and deploy a real-time object-detection
benchmark on it, illustrated in Fig. 4. It is modified from Tiny-Yolo.

Each chiplet includes a 150-kB Activation Buffer and a 144-kB
PIM array, and it can perform 1024 MACs per cycle. Thus, it can
achieve a peak performance of 204.8GOPS with a clock frequency
of 100MHz. Following the LWP mapping strategy, four chiplets are
interconnected in a pipeline and equipped with 1.2Gbps/link die-to-
die connections. Note that all weights and activations are quantized



Figure 5: Workload (RX/COMP/TX) breakdown for the four-chiplet PIM system.

Table 1: Four Chiplets Latency Details

Chiplet Layer Latency (`𝑠) Util. (%)RX COMP TX
0 1 327.68 1474.56 163.84 100

1 2 163.84 737.28 N/A 62.53 N/A 184.32 40.96

2

4_1 40.96 92.16 N/A

28.13
4_2 N/A 92.16 N/A
5 N/A 46.08 N/A
6 N/A 92.16 N/A
7 N/A 92.16 10.24

3 8 10.24 368.64 54.61 25

to low-bitwidth except the first and last layer. Since PIM circuits
only support low-bitwidth MAC, these two layers are deployed on
a host FPGA.

The LWP mapping is performed as Table. 1 shows. In practice,
the latency of each chiplet is difficult to divide evenly. For most
deep neural networks for images, including the adopted one, as the
network goes deeper, the number of filters increases so that the
weight size of latter layers is much larger than the former ones.
Considering that the PIM capacity is limited per chiplet, the chiplets
in charge of the latter layers exhaust their PIM capacity more easily
than the former ones. For example, chiplet 3 in the case only can
be crammed into weights of layer 8. Meanwhile, the trend of the
activation size and computing operations is the opposite. As the
network goes deeper, the activation size is shrinking sharply due
to the pooling function, resulting in a less computing time. Thus,
unbalanced latency occurs. Figure 5 shows the practical workload
breakdown of the four-chiplet PIM system. The first layer is mapped
onto chiplet 0, and the second and third layers are mapped to chiplet
1. The rest layers are mapped on chiplet 2 except layer 8. Thanks to
the large weight size of layer 8, the entire chiplet 3 can only map
one layer. Detailed analysis shows that the computing utilization
of chiplet 2 and 3 is only 28.1% and 25.0%, respectively. It is because
the bubbles are inserted due to the unbalanced pipeline latency.
The average utilization of the system is only 53.8%. It is necessary
to develop a new mapping strategy to enhance the computing
utilization for chiplet-based homogeneous PIM DLP systems.

4 TILE INTERLEAVING
As discussed above, the LWP based method should be evolved to
meet the chiplet-based PIM systems. In this section, we propose

Figure 6: A nine-chip chiplet-based PIM system.

a tile interleaving method without increasing the on-chip PIM or
Activation Buffer sizes.

4.1 Tile Interleaving Methods
Observing from Fig. 5, the computing utilization of chiplet 0 and
1 are obviously greater than the rest two. In other words, LWP
is a too coarse partition scheme for chiplet-based PIM systems.
The basic idea of the interleaving method is to further segment
communication data beyond the LWP. Since the utilization of the
latter chiplets is saturated by the PIM capacity, the interleaving
scheme will be applied to the first few layers.

There are two potential options that can further partition the
workload to more chiplets. One is to split the input feature map into
smaller tiles, and the other one is to unroll the output channel of the
convolution. The latter interleaving method greatly increases the
inter-chiplet activation communication, exacerbating the memory



Figure 7: Workload (RX/COMP/TX) breakdown for the nine-chiplet PIM system with tile interleaving.
wall. Therefore, in this paper, we focus on the tile interleaving
scheme.

There are four steps to perform the tile interleavingmethod. First,
collect the overall weight capacity, activation capacity, operation
latency and data communicating latency of each layer, according
to the DNN benchmarks and chiplet hardware specification. In the
second place, perform the LWP as a rough and initial segmentation
and mapping solution.

The minimum computing latency per chiplet, normally appear-
ing at the last layers, can be evaluated by this step. Thirdly, deter-
mine the overall chiplet number and partition/combine those layers
of unbalanced latency into multiple/one chiplets by increasing the
number of overall chiplets. Layers previously combined on a single
chiplet can also be separated onto different chiplets.

Finally, connect the chiplets according to the pipeline flow and
validate the overall data flow by simulations. The process can be
recursive to find the optimal.

Figure 6 shows a prototype of a chiplet-based PIM system af-
ter tile interleaving. The architecture of each chiplet and overall
routing fabric is slightly different from the previous implementa-
tion. In Fig.3, there are only one-to-one interconnections appearing
between two adjacent chiplets, whereas in Fig.6, there are one-
to-many and many-to-one interconnections occurring between
adjacent and distant chiplets.

At least two extra paths are added per chiplet. A pair of one-
to-one TX/RX from the LWP scheme is not sufficient for the tile
interleaving chiplet-based PIM system. A straightforward method
is to increase the number of TX/RX pairs, as well as the hardware
overhead and power consumption. Actually this overhead can be
avoided. If time shifts are applied to the chiplet set of the same layer,
the different die-to-die paths of would not activated at the same
time. In this case, themany-to-one die-to-die interconnection can be
implemented as one TX/RX pairs multiplexed in time domain. Note
that the scheme should controlled by a top-level synchronization
mechanism.

To accommodate the complicated interconnection, a silicon in-
terposer beneath all the chiplet is desired to design in specific for
the extra routing.

The compilation tool of the chiplet-based PIM systems should
support two functions. First, it should correctly map the parti-
tioned tile data onto the corresponding chiplet, and generate the
instructions to perform data transferring and computing. Second,
it should control the synchronization among all chiplets. Given
that all TX/RX interfaces can only support one-to-one data com-
munication but need to be multiplexed as timing varying, different
tiles should be transferred and computed with time shifts. Comput-
ing does not starts until the RX data are ready, and neither does
the TX. The synchronization mechanism is supposed to be deter-
mined as soon as the tile interleaving and partition is completed.
To achieve synchronization, a WAIT instruction is defined in the
system controller instruction set.

4.2 Case Study II: A Nine-chiplet PIM DLP
A nine-chiplet PIM system with tile interleaving in Fig. 6 is evalu-
ated by the same benchmark of Fig. 4. Each chiplet has the same
performance specification as mentioned in Section 3.3. In contrast
with the four-chiplet PIM system, here is partitioned the first layer
onto four chiplets, indexed by chiplet 0 to 3. Similarly, the second
layer is segmented onto two chiplets, indexed by chiplet 4 and 5.

Figure 7 also shows the workload breakdown when the same
benchmark is compiled and run on the system. Each colored rectan-
gular block represents the corresponding operation of the RX/TX/COMP.
For chiplet 0-3 and chiplet 7, all of which input activations are from
only one source, two adjacent blocks of RX in different color mean
that two activation maps of two consecutive images are fed into
the chiplet one after the other. Among chiplet 0-3, tile interleaving
is performed to segment the workload. A constant time shift is
inserted to avoid hazards during data transferring. Thanks to the
interleaving scheme, some chiplets’ data are not from only one
predecessor, such as chiplet 4-6 and chiplet 8. For these chiplets,
the synchronization should be maintained when different sources
are multiplexed. Take chiplet 4’s first data receiving as an example,
the number of blocks in light green is three, which means its data
from three predecessors. It’s also worth noting that one chiplet may
transmit the output data to multiple chiplets, such as chiplet 0-1
and chiplet 6. It can result from tile-interleaving or the network’s



Table 2: Nine Chiplets Latency Details

Chiplet Layer Latency (`𝑠) Util. (%)RX COMP TX
0

1

87.04 391.68 43.52 100
1 87.04 391.68 43.52 100
2 84.48 380.16 40.96 97.06
3 84.48 380.16 40.96 97.06
4 2 84.48 380.16 20.48 97.06
5 84.48 380.16 20.48 97.06

6
3 40.96 184.32 N/A

94.124_1 N/A 92.16 5.12
4_2 N/A 92.16 5.12

7
5 5.12 46.08 N/A

58.826 N/A 92.16 N/A
7 N/A 92.16 5.12

8 8 10.24 368.64 54.61 94.12

Figure 8: Computing utilization vs. the number of chiplets.

own characteristics. These chiplets transmit data to different desti-
nations continuously. Apparently, the source-chiplet’s transmitting
and the destination-chiplet’s receiving happens at the same time.
Also, some chiplets are mapped with more than one layer. For ex-
ample, chiplet 7 combines three layers and a cross-layer pipeline
can be achieved inside the chip.

Data dependency might degrade the pipeline correctness. In the
proposed system, the three operations of each chiplet are arranged
to cope with data of alternative images at the same time. Therefore,
the pipeline bubbles among chiplets can be compressed. Table 2 de-
tails the configuration and utilization of each chiplet. Most chiplets’
utilization is greater than or close to 95% except chiplet 7. The
overall utilization of the system is 92.8%, which improved by 38.9%
compared with the LWP only scheme. A complete simulation is
performed to evaluate the entire system’s performance. Provided
that the single chiplet has a peak throughput of 204.8GOPS, the
overall system’s peak performance can achieve 1.711TOPS.
4.3 Discussion on Chiplet Numbers
As demonstrated above, the chiplet-based PIM system provides a
new dimension of DLP design space – the number of chiplets. The
computing utilization can be optimized by picking a proper chiplet
number, according to the Section 3.3 and 4.2. We also perform
the tile interleaving strategy on other chiplet-based PIM systems
with different chiplet numbers, As Fig. 8 depicts, it is not true
that the more chiplets are used to map the same layer, the higher
utilization the system achieves. In fact, when the input feature map

is segmented into too many tiles and mapped on too many chiplets,
the sum of all chiplets’ operation latency is greater than only one
chip’s operation latency that is mapped with the same layer. In
addition, the amount of die-to-die data transferring also increases,
causing extra power consumption. For the adopted object detection
benchmark, the optimal chiplet number is nine.
5 CONCLUSION
The paper proposes a tile interleaving method for chiplet-based
homogeneous PIM DLP systems to enhance the computing utiliza-
tion. It overcomes the performance loss of previous PIM mapping
schemes. This method can segment one layer to multiple chiplets
to maximize the overall computing utilization. For a modified Tiny-
YOLO benchmark, the utilization of only the LWP mapping method
is 53.9%, while the utilization of the tile interleaving method is
improved to 92.8%.
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