

TSA-Net: Tube Self-Attention Network for Action Quality Assessment

<u>Shunli Wang</u>, Dingkang Yang, Peng Zhai, Chixiao Chen, Lihua Zhang* Mail: slwang19@fudan.edu.cn, lihuazhang@fudan.edu.cn

Fudan University, Shanghai, China

https://github.com/Shunli-Wang/TSA-Net

Outline

- 1. Background & Motivations
- 2. Proposed TSA-Net
- 3. Experimental Results
- 4. Conclusion

1. Background & Motivations

Human Action Recognition

(HAR)

Models in HAR require distinguishing subtle differences between different actions.

Action Quality Assessment

(AQA)

Models in AQA require evaluating a specific action's advantages and disadvantages.

UCF-101

1. Background & Motivations

Challenge 1: There is a huge GAP between HAR and AQA. Challenge 2: Existing methods cannot perform feature aggregation efficiently.

The performances and efficiency of AQA methods are indeed limited.

How can we design a network structure suitable for AQA to complete

effective and efficient feature aggregation?

1. Background & Motivations

AQA models require rich temporal contextual information and do not require irrelevant spatial contextual information.

2. Proposed TSA-Net

2. Proposed TSA-Net

2. Proposed TSA-Net

3. Experimental Results: Validation of Effectiveness

Method	Diving	Gym Vault	Skiing	Snowboard	Sync. 3m	Sync. 10m	Avg. Corr.
Pose+DCT [27]	0.5300	-	-	-	-	-	-
ST-GCN [41]	0.3286	0.577	0.1681	0.1234	0.6600	0.6483	0.4433
C3D-LSTM [23]	0.6047	0.5636	0.4593	0.5029	0.7912	0.6927	0.6165
C3D-SVR [23]	0.7902	0.6824	0.5209	0.4006	0.5937	0.9120	0.6937
JRG [22]	0.7630	0.7358	0.6006	0.5405	0.9013	0.9254	0.7849
USDL [33]	0.8099	0.757	0.6538	0.7109	0.9166	0.8878	0.8102
NL-Net	0.8296	0.7938	0.6698	0.6856	0.9459	0.9294	0.8418
TSA-Net (Ours)	0.8379	0.8004	0.6657	0.6962	0.9493	0.9334	0.8476

 Table 1: Comparison with state-of-the-arts on AQA-7 Dataset.

Table 2: Study on different settings of the number of TSA module.

Method	Diving	Gym Vault	Skiing	Snowboard	Sync. 3m	Sync. 10m	Avg. Corr.
TSA-Net	0.8379	0.8004	0.6657	0.6962	0.9493	0.9334	0.8476
TSAx2-Net	0.8380	0.7815	0.6849	0.7254	0.9483	0.9423	0.8526
TSAx3-Net	0.8520	0.8014	0.6437	0.6619	0.9331	0.9249	0.8352

Table 4: Comparison with state-of-the-arts on MTL-AQA.

Method	Avg. Corr.	
Pose+DCT [27]	0.2682	
C3D-SVR [23]	0.7716	
C3D-LSTM [23]	0.8489	
C3D-AVG-STL [25]	0.8960	
C3D-AVG-MTL [25]	0.9044	
MUSDL [33]	0.9273	
NL-Net	0.9422	
TSA-Net	0.9393	

TSA-Net achieves SOTA performance on AQA-7 and MTL-AQA.

3. Experimental Results: Validation of Effectiveness

Single object tracking strategy can handle these difficult situations perfectly.

3. Experimental Results: Verification of Efficiency

 $O\left(\left(N \times T \times H \times W\right) \times \left(N \times T \times H \times W\right)\right)$

$$O\left(\left(\sum_{c}\sum_{t}|\Omega_{c,t}|\right)\times\left(\sum_{c}\sum_{t}|\Omega_{c,t}|\right)\right)$$

Table 3: Comparisons of computational complexity and performance on AQA-7. GFLOPs is adopted to measure the computational cost.

Method	NL-Net	TSA-Net	Comp. Dec.	Corr. Imp.
Diving	2.2G	0.864G	-60.72%	↑0.0083
Gym Vault	2.2G	0.849G	-61.43%	10.0066
Skiing	2.2G	0.283G	-87.13%	↓0.0041
Snowboard	2.2G	0.265G	-87.97%	10.0106
Sync. 3m	2.2G	0.952G	-56.74%	10.0034
Sync. 10m	2.2G	0.919G	-58.24%	10.0040
Average	2.2G	0.689G	-68.70%	10.0058

Table 5: Comparisons of computational complexity and performance between NL-Net and the variants of TSA-Net on MTL-AQA.

Method	Sp. Corr.↑	MSE↓	FLOPs↓
NL-Net	0.9422	47.83	2.2G
TSA-Net	0.9393	37.90	1.012 G
TSAx2-Net	0.9412	46.51	2.025G
TSAx3-Net	0.9403	47.77	3.037G

The TSA-Net can obtain better performance while reducing the computational complexity.

3. Experimental Results: Verification of Efficiency

AQA-7 diving

(a) Comparison of computational complexity on AQA-7 diving training set.

(b) Comparison of computational complexity on AQA-7 diving testing set.

AQA-7 snowboard

(g) Comparison of computational complexity on AQA-7 snowboard training set.

(h) Comparison of computational complexity on AQA-7 snowboard testing set.

3. Experimental Results: FR-FS

#308-1

FSA-Net

Plain-

#241-3

TSA-Net

(Fall Recognition in Figure Skating)

The network with TSA mechanism has higher identification.

Acc.
94.23
98.56

4. Conclusions: Discussion and Future Work

Adaptive Mechanism of the ST-Tube

4. Conclusions

- We exploit a simple but efficient sparse feature aggregation strategy named Tube Self-Attention (TSA) module.
- We propose an effective and efficient AQA framework named TSA-Net based on TSA module.
- Our approach outperforms state-of-the-arts on the challenging MTL-AQA and AQA-7 datasets and a new proposed dataset named FR-FS.

Thanks! Q & A