

TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Shunli Wang^{1,3}, Dingkang Yang^{1,2}, Peng Zhai^{1,4}, Chixiao Chen¹, Lihua Zhang^{2,1,3,4*}

Academy for Engineering and Technology, Fudan University¹ Ji Hua Laboratory, Foshan, China² Engineering Research Center of AI and Robotics, Shanghai, China³ Jilin Provincial Key Laboratory of Intelligence Science and Engineering, Changchun, China⁴

https://github.com/Shunli-Wang/TSA-Net

Introduction

Models in HAR require distinguishing subtle differences between different actions.

Human Action Recognition (HAR) Models in AQA require evaluating a specific action's advantages and disadvantages.

Action Quality Assessment (AQA)

Experiments

Quantitative analysis on AQA-7 and MTL-AQA

Comparison with SOTAs on AQA-7

Method Diving		ng Gym V	Gym Vault		Snowboard	Sync. 3r	n Sync. 10m	Avg. Corr.
Pose+DCT [2]	7] 0.53	- 00		-	-	-	-	-
ST-GCN [41]] 0.32	86 0.57	7	0.1681	0.1234	0.6600	0.6483	0.4433
C3D-LSTM [2	3] 0.60	47 0.56	36	0.4593	0.5029	0.7912	0.6927	0.6165
C3D-SVR [23	8] 0.79	02 0.68	24	0.5209	0.4006	0.5937	0.9120	0.6937
JRG [22]	0.76	30 0.73	58	0.6006	0.5405	0.9013	0.9254	0.7849
USDL [33]	0.80	99 0.75	57	0.6538	0.7109	0.9166	0.8878	0.8102
NL-Net	0.82	96 0.79	38	0.6698	0.6856	0.9459	0.9294	0.8418
TSA-Net (Our	rs) 0.83	79 0.80	04	0.6657	0.6962	0.9493	0.9334	0.8476
Computational cost analysis on AQA-7						Results on MTL-AQA		
Method	NL-Net	TSA-Net	Com	p. Dec.	Corr. Imp.		Method	Avg. Corr.
Diving	2.2G	0.864G	64G -60.72%		10.0083	Pose+DCT [27]		0.2682
Gvm Vault	2.2G	0.849G	-61	1.43%	10.0066	C3D-SVR [23] C3D-LSTM [23]		0.7716
Skiing	2.2G	0.283G	-87	7.13%	0.0041			0.8489
Snowboard	2.2G	0.265G	-87	7.97%	↑ 0.0106	C3I	D-AVG-STL [25]	0.8960
Sync. 3m	2.2G	0.952G	-56	5.74%	10.0034	C3L	MUSDI [33]	0.9044
Sync. 10m	2.2G	0.919G	-58	8.24%	↑0.0040			0.9275
Average	2.2G	0.689G	-68	8.70%	↑0.0058		NL-Net TSA-Net	0.9422 0.9393

- Most existing methods in AQA usually directly migrating the model from HAR tasks, which ignores the intrinsic differences within the feature map such as foreground and background information.
- To address this issue, we propose a Tube Self-Attention Network (TSA-Net) for action quality assessment tasks with the following merits:
 - High Computational Efficiency
 - High Flexibility
 - State-of-the-art Performance
- A dataset named FR-FS is proposed to explore the basic action assessment in the figure skating scene.

TSA-Net achieves SOTA performance on AQA-7 and MTL-AQA datasets.

Visualization on AQA-7 and MTL-AQA

Overview of the proposed TSA-Net for AQA

- \succ **1.Tracking**. VOT tracker is adopted to generate tracking results **B**.
- 2.Feature Extraction-s1. The input video is divided into N clips and the feature extraction is performed by I3D-Stage1 to generate X.
- 3.Feature Aggregation. ST-Tube is generated given B and X, and then the TSA mechanism is used to complete the feature aggregation, results in X'.
- A.Feature Extraction-s2. Aggregated feature X' is passed to I3D-Stage2 to generate H'.
- ➤ 5.Network Head. The final scores are generated by MLP_Block.

Single object tracking strategy can handle these difficult situations perfectly: \star Camera rotation \star Small target \star Synchronized diving \star Target loss

Computational cost comparison: TSA module vs Non-local

TSA-Net can obtain better performance while reducing the computational cost.

TSA Module

Conclusion

- In this paper, we present TSA-Net for AQA tasks, which is able to capture rich spatiotemporal contextual information in human motion.
- Experiments on AQA-7, MTL-AQA, and proposed FR-FS demonstrate that TSA-Net can capture long-range information and achieve high performance with less computational cost.
- An adaptive mechanism of ST-Tube will be explored to avoid the sensitivity of the TSA-Net to the size issue in future.

Acknowledgements

This work was supported by Shanghai Municipal Science and Technology Major Project 2021SH-ZDZX0103 and National Natural Science Foundation of China under Grant 82090052.

Contact

Shunli Wang slwang19@fudan.edu.cn Lihua Zhang* lihuazhang@fudan.edu.cn