
A 0.57-GOPS/DSP Object Detection PIM Accelerator on FPGA
Bo Jiao, Jinshan Zhang, Yuanyuan Xie, Shunli Wang, Haozhe Zhu, Xiaoyang Kang, Zhiyan Dong,

Lihua Zhang and Chixiao Chen
Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, PR China

Email:{cxchen,xiaoyang_kang}@fudan.edu.cn

ABSTRACT
The paper presents an object detection accelerator featuring a
processing-in-memory (PIM) architecture on FPGAs. PIM archi-
tectures are well known for their energy efficiency and avoidance
of the memory wall. In the accelerator, a PIM unit is developed
using BRAM and LUT based counters, which also helps to improve
the DSP performance density. The overall architecture consists of 64
PIM units and three memory buffers to store inter-layer results. A
shrunk and quantized Tiny-YOLO network is mapped to the PIM ac-
celerator, where DRAM access is fully eliminated during inference.
The design achieves a throughput of 201.6 GOPs at 100MHz clock
rate and correspondingly, a performance density of 0.57 GOPS/DSP.

1 INTRODUCTION
Recent advances in artificial intelligence have driven many ASIC
and FPGA implementations, among which tiny machine learning
(tinyML) on terminal devices draws much attention. In terms of
energy efficiency and memory wall issues, PIM architectures over-
weight traditional Von-Neumann and coarse-grained reconfigurable
array (CGRA) architectures [1], more suitable for tinyML applica-
tions. However, PIM accelerators normally require particular tech-
nology of emerging memory devices (ReRAM, MRAM, PCRAM
etc.) and custom analog computing circuits. In other words, PIM
implementations are regarded as infeasible on FPGAs.

In this paper, we propose an FPGA based PIM tinyML acceler-
ator, where block RAMs (BRAMs) are utilized as PIM memories
and look-up-table(LUT)-based custom circuits are generated for
PIM computing. The memory wall is mitigated because both inter-
layer activations and weights can be fully stuffed in the accelerator.
Moreover, DSP blocks, as the most constrained FPGA resource in
data-intensive applications, are not involved in tensor computing
circuits [2] here. A co-designed object detection algorithm is de-
ployed on the accelerator to verify the proposed accelerator. The
scheme achieves performance density of 0.57GOPS/DSP, 3.4x better
than traditional CGRA implementation on FPGAs [3].
2 FPGA BASED PIM UNIT
PIM architectures and tinyML implementations desire low bit-width
quantized networks. They reduce both memory space and comput-
ing power, and they are capable of good accuracy. Learned step-size
quantization (LSQ) in [4] achieves almost the same accuracy as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’21, Jan. 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431659

Figure 1: (a) Neural network quantization using LSQ. (b) Pro-
posed PIM unit on FPGA.
floating point on ResNet-18, but only adopts 3-bit quantized activa-
tions and weights. Figure 1(a) illustrates a single layer operation
of the LSQ algorithm. Both weights and activations are quantized
into 3 bits by scaling factors of 𝑠𝑤 and 𝑠𝐴 , respectively. A tensor
computing block completes the convolution or full connection op-
eration afterward. The output of the tensor block is processed by
rescaling, normalization, and ReLU, which can be merged into one
operator, known as RBR here. The RBR results are quantized as the
input activations of the next layer.

Figure 1(b) demonstrates a hardware PIM unit corresponding to
1(a). In each unit, network weights are stored into a 72-Kb BRAM.
The BRAM is configured as a 144bx512 one. For 3x3 kernels, each
144 bits contains 48 3-bit weights. To accommodate row-stationary
data flow, the 48 weights are assigned to 3 consecutive weights
in a row from 16 input channels. The bitwise multiplier performs
a logical AND between 1-bit of activation and 1-bit of weight. A
pop-counter, implemented with LUTs, accumulates all 1-bit prod-
ucts, and the overall 3-bit results are shift added through a DSP
unit. Intermediate partial sums are stored in a local scratchpad,
implemented with LUTRAM cells. Another DSP unit completes the
RBR operations.

There are 64 PIM units in the proposed accelerator. All PIM units
share one 16-bit input activation and perform 192 1bx3b multiplica-
tions simultaneously. The partial sums are accumulated according
to the data flow configuration.
3 ACCELERATOR ARCHITECTURE
The overall accelerator architecture facilitates the PIM design on
an FPGA SoC platform, as depicted in Fig. 2. The key strategy
of the tinyML accelerator is to avoid off-chip DRAM data access
during inference, thus completely eliminating the memory wall. By
adopting low-bit-width quantization, the overall weight memory
is reduced to 0.7MB and can be fully stored into the 64 BRAMs.
There are three 876Kb RAMs assigned as activation buffers, from
which PIM units load data and to which PIM units store inter-layer

https://doi.org/10.1145/3394885.3431659

ASPDAC ’21, Jan. 18–21, 2021, Tokyo, Japan Jiao,Zhang, et al.

Figure 2: Overall PIM accelerator architecture

Figure 3: Deployed tiny-YOLO network

results. Therefore, there is no intermediate data accessed from/to
the off-chip DRAM.

The accelerator is equipped on an FPGA SoC platform, where
the programmable logic gates (PL) are controlled by an on-chip
Linux-operating ARM core. All memories can be accessed by the
core and the DMA via the AXI bus. A switch box connects the
PIM units and the activation buffers according to the source and
destination configuration. In each PIM unit, an additional pooling
block is inserted between the scratchpad and the RBR block. It can
reduce the activity ratio of the RBR block in those layers followed
by a max-pooling layer. The accelerator also contains a reorder
buffer, which converts the data order of different data flows into a
sequential order required by the next layer.

4 EXPERIMENTAL RESULTS
To verify the design, we deployed a shrunk tiny-YOLO network
[5] on the proposed accelerator to demonstrate a real-time object
detection task. Figure 3 details the deployed network. The network
includes seven 3x3 convolutional layers, three 1x1 layers, five max-
pooling down-sampling layers, and one up-sampling layer. Among
these layers, the first and last layer are not quantized and imple-
mented on the ARM core, and all rest layers are on the accelerator.

The accelerator is implemented on an Ultra96v2 FPGA board, and
described in Verilog RTL, rather than high-level synthesis. Thanks
to the PYNQ framework, the accelerator can be easily controlled
with a Jupyter notebook. Figure 4 illustrates the hardware and
software environment while the accelerator is operating. A green
bounding box can be drawn on the input image according to the ac-
celerator results. A red box, indicated as ground truth, is also drawn
for intersection over union (IoU) analysis. Table 1 shows the usage
of various hardware resources. The PIM design almost exhausts
LUT, BRAM and DSP resources to maximize the performance den-
sity. Table 2 shows the overall operation details. It is found that
the peak throughput and performance density are obtained during
the first two layers, which is 201.6 GOPS and 0.57GOPS/DSP re-
spectively at a clock rate of 100MHz. The total processing time is
10.2ms, namely achieving a frame rate of 91.7fps.

Figure 4: Accelerator software/hardware deployment.
Table 1: Resource Utilization

Resource LUT LUTRAM FF BRAM DSP
Utilization 69.9k 9.3k 43.6k 210.5 353

Per Centerage 99.1% 32.3% 30.9% 97.5% 98.1%

Table 2: Measured Latency Breakdown for YOLOv3-Tiny

Layer Kernel
Size

Input Size
𝐶 ×𝑊 ×𝐻

Output Size
𝐶 ×𝑊 ×𝐻

#MOp Latency
(ms)

CONV2 3 s1 16×256×144 32×256×144 339.74 1.68
CONV3 3 s1 32×128×72 64×128×72 339.74 1.68
CONV4 3 s1 64×64×36 128×64×36 339.74 1.71
CONV5_1 3 s1 128×32×18 128×32×18 169.87 0.88
CONV5_2 3 s1 128×32×18 128×32×18 169.87 0.88
CONV6 3 s1 128×16×9 192×16×9 63.70 0.35
CONV7 1 s1 192×16×9 256×16×9 14.16 0.21
CONV8 1 s1 256×16×9 128×16×9 9.44 0.14
CONV9 3 s1 256×32×18 192×32×18 509.61 2.70

5 CONCLUSION
This paper presents an object detection PIM accelerator on Ul-
tra96v2 FPGA. The accelerator features FPGA based PIM implemen-
tation. Together with multiple activation buffers, the accelerator
fully eliminates DRAM access, i.e. the memory wall, during infer-
ence. A quantized and shrunk tiny-YOLO network is deployed on
the accelerator to verify the effectiveness of the design.

ACKNOWLEDGEMENT
This work was supported by The National Key Research and Development
Program of China under Grants 2019YFB2205000, Shanghai Rising-Star Pro-
gram under Grants 20QA1407300, Shanghai Sailing Program under Grants
18YF1402300, and Science and Technology Commission of Shanghai Munic-
ipality, under Grants No. 19511132000.

REFERENCES
[1] Y. Cai, et al., “Training low bitwidth convolutional neural network on RRAM," Asia

and South Pacific Design Automation Conference (ASP-DAC), pp. 117-122, 2018.
[2] D. Wang, et al., “ABM-SpConv: A Novel Approach to FPGA-Based Acceleration of

ConvolutionaI NeuraI Network Inference,” in 2019 56th ACM/IEEE Design Automa-
tion Conference (DAC), pp. 1–6, 2019.

[3] H. Zhu, Y. Wang, and C.-J. R. Shi, “Tanji: A General-Purpose Neural Network
Accelerator with a Unified Crossbar Architecture,” in IEEE Design & Test, vol. 37,
no. 1, pp. 56–63, Feb. 2020.

[4] S.K. Esser, et al., “Learned Step Size Quantization," in International Conference on
Learning Representations 2020 (ICLR), 2020.

[5] J. Redmon, and Ali Farhadi. “YOLOv3: An Incremental Improvement," [On-
line]Available: https://arxiv.org/abs/1804.02767, 2018.

	Abstract
	1 Introduction
	2 FPGA based PIM Unit
	3 Accelerator architecture
	4 Experimental Results
	5 Conclusion
	References

