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Abstract—The expensive cost of the medical skill training
paradigm hinders the development of medical education, which
has attracted widespread attention in the intelligent signal pro-
cessing community. To address the issue of composite error action
recognition in Cardiopulmonary Resuscitation (CPR) training,
this letter proposes a multimodal pre-training framework named
CPR-CLIP based on prompt engineering. Specifically, we design
three prompts to fuse multiple errors naturally on the semantic
level and then align linguistic and visual features via the
contrastive pre-training loss. Extensive experiments verify the
effectiveness of the CPR-CLIP. Ultimately, the CPR-CLIP is
encapsulated to an electronic assistant, and four doctors are re-
cruited for evaluation. Nearly four times efficiency improvement
is observed in comparative experiments, which demonstrates
the practicality of the system. We hope this work brings new
insights to the intelligent medical skill training and signal
processing communities simultaneously. Code is available on
https://github.com/Shunli-Wang/CPR-CLIP.

Index Terms—Human action analysis, cross-modal interaction,
action quality assessment, CPR skill training.

I. INTRODUCTION

INTELLIGENT medical skill training systems have re-
ceived continuous attention in signal processing community

in recent years. Statistics [1] show that the mean price of a U.S.
medical education was about $300,000, 75% of students took
on loans, and their average debt at graduation was $200,000.
Medical institutions and training centers are highly concerned
about improving training efficiency and saving costs, as this
affects the quality of medical services nationally.

Fortunately, with the flourishing development of signal pro-
cessing technologies [2], [3], [4], [5], [6], [7], some algorithms
[8], [9], [10], [12], [13], [14], [24] have been introduced
into medical skill analysis research. Studies in medical skill
analysis mainly focus on surgical skill evaluation [8], [9],
[11], [15] and operating skills identification on surgical robot
systems [13], [14], [25], [26]. Despite the progress in datasets
and algorithms, these methods still face two challenges: on the
one hand, most of these models only support skill classification
from Novice/Medium/Expert, which lacks interpretability in
application. On the other hand, these algorithms usually have
poor interactivity. The outputs are the scores of each category,
making the model unable to become effective assistants.
Overall, there is a considerable gap between current medical
skill training systems and practical application.
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Fig. 1. Different colored marks represent different error actions. There is
a significant challenge in recognizing composite error actions with limited
single-class samples. The vast divergence in data distribution poses higher
requirements of generalization for algorithms.

To address the above issues, this study explores composite
error recognition and actual deployment in Cardiopulmonary
Resuscitation (CPR) training. CPR is a core life-saving tech-
nique for cardiac and respiratory arrest. Inappropriate CPR
actions will cause unsatisfactory effects and secondary damage
[11]. Subjects usually make multiple mistakes during testing,
while the training set cannot contain all combinations of errors,
which leads to the composite error recognition task. As shown
in Fig. 1, the form of the composite error recognition task
is: given a set that only contains single-error samples, the
algorithm is required to accurately identify complicated error
combinations in application. Restricted supervision conditions
exceed the capabilities of traditional action recognition al-
gorithms [16], [17], [18], [19], [20]. Inspired by the Con-
trastive Language-Image Pre-Training (CLIP) paradigm [27],
[29], [28], this letter introduces the prompt engineering [30],
[31] into a composite error recognition task and proposes a
multi-modal pre-training framework named CPR-CLIP. The
motivation is neat and straightforward: aligning language em-
beddings with augmented visual features through minimizing
a multimodal contrastive loss function. This approach fully
utilizes the advantage of natural language, which can integrate
and describe composite errors smoothly, thus improving the
generalization of the model. Extensive experimental results
verify the effectiveness brought by the contrastive pre-training.

Unlike previous studies [9], [11], [14] that stopped after
verifying the performance of the proposed methods, we lever-
age the merits of the multi-modal framework and transform
it into a real assistant for doctors. Controlled experiments
on time-consuming and precision are conducted to verify the
effectiveness of the electronic assistant in actual deployment.

In summary, our contributions are as follows:
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(b) Inference phase of the CPR-CLIP.
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Fig. 2. Architecture of the CPR-CLIP. (a) shows the multi-modal pre-training phase of the CPR-CLIP. The visual pathway, language pathway, and the loss
part are colored in different themes for clarity. This figure only depicts the situation of two inputs, and more inputs follow the same pattern. (b) shows the
inference phase of the CPR-CLIP. Testing videos are sampled from Set-2 of CPR-Coach, which contains abundant error combinations.

• We propose the first prompt-based pre-training frame-
work named CPR-CLIP for composite error action recog-
nition in CPR training;

• Extensive experimental results demonstrate that the CPR-
CLIP have achieved promising performances on compos-
ite error recognition task;

• We deploy the CPR-CLIP model in practice to verify its
effectiveness. Results show that the system can effectively
improve the doctors’ efficiency by nearly 4 times.

II. PROPOSED METHOD

The architecture of the CPR-CLIP is shown in Fig. 2(a).
It consists of three stages: video feature extraction, prompt
generation and embedding, and contrastive loss computing.

A. Video Feature Extraction

Firstly, sample two videos (v1, c1) and (v2, c2) from differ-
ent classes of single-class error videos from the dataset. Labels
c1 and c2 indicate the errors in videos v1 and v2, respectively.
Note that the sampling process meets c1 ̸= c2. v1 contains
L1 frames and v2 contains L2 frames, i.e., v1 = {Ii}L1

i=1,
v2 = {Ij}L2

j=1. With the help of video backbones such as TSN
[16], we can map the original video v into video feature:

x = FTSN (v;θTSN ),x ∈ RT×D, (1)

where T denotes the number of clips sampled from the original
video x, D denotes the dimension of the video feature, and
θTSN denotes the parameters in the video backbone.

In the feature fusion stage, we adopt the same configuration
as [11] for comparability. After enhancing the diversity of
feature combinations through introducing randomness λ ∼
U(0, 1) into the weighted summation, a temporal average
pooling operation is added to obtain the video representation:

xn =
1

T

T∑
t=1

(
λxt

1 + (1− λ)xt
2

)
,xn ∈ RD, (2)

where xt
1 denotes the t-th row of the video feature x1.

Finally, the fused features xn are transformed into the final
video representation through the video feature encoder FV (·):

fn = FV (xn;θV ), fn ∈ RD, (3)

where θV denotes the trainable parameters. The visual encoder
FV (·) is instantiated through a two-layered MLP network.

B. Prompt Generation and Embedding
Human language can naturally express various composite

information fluently [28]. Inspired by this, this letter designs
a set of prompt templates for expressing combinations of
error actions. Fig. 2(a) illustrates the process of generating
prompts for Overlap Hands and Bending Arms errors in
detail. The set of templates comprehensively describes specific
error combinations from quantity, classes, and corresponding
advice. Detailed definitions of Number Prompt Pnum, Classes
Prompt Pcls, and Advice Prompt Padv are as follow:

Pn
num = “This video clip contains {cnt} errors in total.”

Pn
cls = “This subject made both {c1} and {c2} mistakes.”

Pn
adv = “This subject should {a1}, and {a2}.”

where {cnt} represents the number of composite errors, which
varies according to the number of composite errors during the
training stage. {c1} and {c2} represent specific error cate-
gories, while {a1} and {a2} represent corresponding advice,
respectively. n represents the n-th sample within a batch.

Three types of prompts Pn
num, Pn

cls and Pn
adv are fused into

the final prompt Pn through string concatenation:

Pn = Pn
num ⊕ Pn

cls ⊕ Pn
adv, (4)

where ⊕ denotes the concatenation operation. Similar to the
mapping process in the visual pathway, the prompt Pn is
mapped to embeddings through the text encoder:

tn = FT (Pn;θT ), tn ∈ RD, (5)

where θT denotes the trainable parameters of the text encoder
FT (·). The structure of FT (·) follows the setting in the
original CLIP framework [27]: a 12-layer Transformer with
the feature dimension of 512 and 8 attention heads.
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C. Contrastive Pre-Training Loss

The CPR-CLIP aims to align visual and linguistic features
into the same semantic representation space through a self-
supervised contrastive pre-training mechanism. We take advan-
tage of the CLIP loss to improve the performance and usability
of the network. In a batch that contains N samples, the visual
feature F = {fn}Nn=1 and text feature T = {tn}Nn=1 are
obtained through visual and language pathways, respectively.
The cosine similarity between fn and tn is defined as:

sim(fn, tn) =
fn · tn

∥fn∥∥tn∥
. (6)

Therefore, the similarity matrix in a batch is represented as:

S(F,T) =

 sim(f1, t1) · · · sim(f1, tN )
...

. . .
...

sim(fN , t1) · · · sim(fN , tN )

 . (7)

By adopting the softmax normalization function along rows
and columns of the S(F,T), we can obtain the text-wise
similarity matrix ST (F,T) and video-wise similarity matrix
SV (F,T), respectively. Afterward, a Ground-Truth (GT) ma-
trix MGT ∈ 1

N×N ,1 = {0, 1} is created according to the
consistency of visual and language labels within a batch. In
MGT , positions where video features and linguistic features
match are padded with 1, while others with 0.

The Kullback–Leibler (KL) divergence is adopted as the
metric between similarity matrices and MGT . The multi-modal
contrastive pre-training loss of the CPR-CLIP is expressed as:

LCLIP =
1

2
(KL [SF (F,T)||MGT ]

+KL [SV (F,T)||MGT ]).
(8)

The goal of the optimizer is to find the optimal parameters
(θV ,θT ) of CPR-CLIP to minimize the loss:

(θ∗
V ,θ

∗
T ) = argmin

(θV ,θT )

LCLIP . (9)

Although the LCLIP provides supervision during training,
it is insufficient because it belongs to the self-supervised
paradigm. Therefore, we follow the design of the network head
in ImagineNet [11] and add the Binary Cross Entropy (BCE)
loss to the CPR-CLIP. This variant is named by CPR-CLIP+
for discrimination. Loss of the CPR-CLIP+ is expressed as:

L+ = LCLIP + LBCE . (10)

D. Inference of the CPR-CLIP

Details of the inference stage are shown in Fig. 2(b). In the
language pathway, assuming there are K types of independent
errors, we can obtain a prompt set P ′ = {Pk}Kk=1 through the
prompt templates mentioned above. For the k-th class, the
input prompt is obtained through:

Pk = P k
num ⊕ P k

cls ⊕ P k
adv. (11)

After that, an embedding set T′ = {tk}Kk=1 corresponding
to the testing prompts set P ′ is obtained through the pre-
trained text encoder: tk = FT (Pk;θ

∗
T ), tk ∈ RD. In the visual

pathway, after the target video v′ is mapped to x′ through the

video backbone, the visual feature f ′ is generated by the video
encoder: f ′ = FV (x

′;θ∗
V ), f

′ ∈ RD.
During inference, the similarity matrix in Eq. (7) degen-

erates into a K-dimensional vector for the video feature f ′,
which indicates the similarity scores between f ′ and T′:

SV (f
′,T′) = [sim(f ′, t1), · · · , sim(f ′, tK)] . (12)

CPR-CLIP also supports video retrieval patterns. Given a spe-
cific query prompt embedding t′ and the entire video features
set F′, the CPR-CLIP generates a video-wise similarity vector:

ST (F
′, t′) = [sim(f1, t

′), · · · , sim(fM , t′)]
T
. (13)

This advantage of CPR-CLIP can be used for fast retrieval
function with natural language among large-scale video sets.

III. EXPERIMENTS

A. Dataset and Evaluation Metrics

The CPR-Coach dataset [11] provides 14 single-class ac-
tions and 74 composite error actions in four different per-
spectives, containing 4,544 videos. All experiments in this
letter maintained the same settings with [11] for comparability:
single-class error videos in Set-1 are used for training, while
composite error videos in Set-2 are used for testing. The
performance of composite error action recognition is measured
through mAP and mmit mAP. mAP averages the precision
of all K classes, mAP = (

∑K
k=1 APk)/K. mmit mAP

averages the precision over all M videos, mmit mAP =
(
∑M

m=1 APm)/M . Two metrics correspond to the macro mAP
and micro mAP in [23], respectively.

B. Implementation Details

All experiments are implemented on a system with an AMD
EPYC 7742@2.25GHz CPU and an NVIDIA Tesla A800
GPU. The input resolution of the video backbone is set to
224 × 224. The training epoch is set to 60, corresponding to
32k pre-training iterations under batch size N = 32. The SGD
optimizer is adopted with the base learning rate of 0.001 and
attenuated by 0.1 at 20 and 40-th epochs. The visual encoder is
loaded from the pre-trained model and frozen during training.

C. Performance Evaluation

Table I lists the performance of direct migration meth-
ods, CPR-CLIP, and the variant model CPR-CLIP+. Taking
the vanilla migrations as baselines, Table I annotates the
performance gains brought by the proposed mechanisms.
Results show that the pre-training process brings significant
performance improvements. For example, 9.89% mAP and
8.66% mmit mAP gains are observed on CPR-CLIP w/ Video
Swin Transformer [20]. Fig. 3 visualizes the loss of CPR-
CLIP and performance metrics of each epoch during training.
Continuous decrease of the loss indicates that the language
embeddings and visual features are gradually and successfully
aligned into the same space. Decreasing loss and increasing
performance confirm the effectiveness of the CPR-CLIP. Table
I also demonstrates the indispensability of BCE loss, which
brings additional performance gains to the CPR-CLIP.
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TABLE I
PERFORMANCE COMPARISON AMONG DIRECT MIGRATION, CPR-CLIP,

AND THE VARIANT MODEL CPR-CLIP+.

Model mAP ∆ mmit mAP ∆

TSN [16] 0.5598 — 0.6143 —
CPR-CLIP 0.6034 ↑ 4.36% 0.6727 ↑ 5.84%

CPR-CLIP+ 0.6417 ↑ 8.19% 0.7030 ↑ 8.87%

TSM [17] 0.5662 — 0.6618 —
CPR-CLIP 0.6401 ↑ 7.39% 0.7074 ↑ 4.56%

CPR-CLIP+ 0.7076 ↑ 14.14% 0.7602 ↑ 9.84%

ST-GCN [18] 0.5776 — 0.6692 —
CPR-CLIP 0.6028 ↑ 2.52% 0.6831 ↑ 1.39%

CPR-CLIP+ 0.6358 ↑ 5.82% 0.7127 ↑ 4.35%

ViViT [19] 0.5582 — 0.6651 —
CPR-CLIP 0.6503 ↑ 9.21% 0.7494 ↑ 8.43%

CPR-CLIP+ 0.7251 ↑ 16.69% 0.7754 ↑ 11.03%

Video Swin [20] 0.5696 — 0.6701 —
CPR-CLIP 0.6685 ↑ 9.89% 0.7567 ↑ 8.66%

CPR-CLIP+ 0.7439 ↑ 17.43% 0.7924 ↑ 12.23%

TABLE II
PERFORMANCE COMPARISON BETWEEN CLIP-CPR+ AND SOTAS.

Model Backbone mAP mmit mAP

CBP [21]

TSM [17]

0.6864 0.7487
Block [22] 0.6651 0.7222

ImagineNet-FC [11] 0.7053 0.7566
CPR-CLIP+ 0.7076 0.7602

CBP [21]

Video Swin [20]

0.6951 0.7524
Block [22] 0.6801 0.7322

ImagineNet-FC [11] 0.7082 0.7638
CPR-CLIP+ 0.7439 0.7924

Table II compares the performance of CLIP-CPR+ with the
existing state-of-the-art (SOTA) methods. Two feature aggre-
gation methods, Compact Bilinear Pooling (CBP) [21] and
Block [22], are implemented and measured for comprehensive
comparison. Results show that the combination of contrastive
pre-training loss LCLIP and BCE loss LBCE in CPR-CLIP+
effectively improves the generalization performance in com-
posite error recognition tasks. The results confirm the comple-
mentation of contrastive self-supervision and full supervision.
In other words, the CPR-CLIP+ adds contrastive pre-training
loss LCLIP based on the ImagineNet-FC. Therefore, the
performance comparison belongs to ablation results, which
also confirms the effectiveness of the proposed framework.

D. Ablation Studies

Ablation studies are conducted on three types of prompts
Pcnt, Pcls, and Padv of the CPR-CLIP. Table III lists the
performance under various ablation settings. Macroscopically,
all three prompts contribute to the final performance. Results
show that Pcls has the highest weight, which is consistent
with our intuition because Pcls explicitly describes error
information. The advice prompt Padv also provides a positive
impact as it introduces richer semantic information during pre-
training. Removing the number prompt Pnum brings 0.73%
mmit mAP improvement of the CPR-CLIP w/ TSM. This is
mainly caused by the default setting that {cnt} is one during
inference, thus resulting in the misalignment issue. Although
enriching the types of prompts improves the effectiveness of
the multimodal contrastive pre-training process, the improve-
ment is still lower than the performance gain brought by the
BCE loss. The entire framework requires the combination and
complementarity between LCLIP and LBCE .

TABLE III
ABLATION STUDIES OF THREE TYPES OF PROMPTS ON CPR-CLIP.

Backbone Variants Pnum Pcls Padv mAP mmit mAP

TSM [17]
CPR-CLIP

✔ ✔ ✔ 0.6401 0.7074
✘ ✔ ✔ 0.6298 0.7147
✔ ✘ ✔ 0.4498 0.5480
✔ ✔ ✘ 0.5651 0.6870

CPR-CLIP+ ✔ ✔ ✔ 0.7076 0.7602

Video Swin [20]
CPR-CLIP

✔ ✔ ✔ 0.6685 0.7567
✘ ✔ ✔ 0.6351 0.7328
✔ ✘ ✔ 0.4525 0.5910
✔ ✔ ✘ 0.5591 0.7470

CPR-CLIP+ ✔ ✔ ✔ 0.7439 0.7924

(a) (b)

Fig. 3. (a) shows the contrastive pre-training loss of the CPR-CLIP model
and the testing performance after each training epoch. (b) demonstrates the
time consumption and evaluation performance of four doctors.

E. Practical Deployment of the CPR-CLIP

As described in Eq. (13), the CPR-CLIP supports video
retrieving with natural language, which can be used as an
electronic assistant. Under this setting, doctors no longer need
to suffer from judging each video individually but instead
use natural language to query all videos through CPR-CLIP
and then review the assistant results. To verify the actual
effectiveness of the system, we recruited four doctors and
conducted comparative experiments on the time-consuming
and evaluation quality. All testing videos in CPR-Coach Set-
2 are randomly divided into two groups: G1 and G2. Firstly,
these doctors are asked to identify all errors on each video
in G1. Afterwards, they are asked to use CPR-CLIP as an
auxiliary retrieval tool to identify all videos in G2. Time-
consuming and precision under two settings will be recorded
in the end. Fig. 3 summarizes the average time-consuming and
mean average precision of all four doctors. As expected, the
CPR-CLIP significantly improves efficiency without compro-
mising the evaluation quality. The assistant system has helped
doctors improve their efficiency by nearly 4 times on average.

IV. CONCLUSION

In this letter, we propose a contrastive pre-training frame-
work named CPR-CLIP to address the composite error recog-
nition issue in CPR training. Extensive experiments and practi-
cal deployment demonstrate the effectiveness of the CPR-CLIP
under the Single-class Training & Multi-class Testing setting.
This study only focuses on the external cardiac compression
action analysis, not the entire process of CPR. We will
continue to explore the application of CPR-CLIP in complex
temporal medical action analysis and retrieval in the future.
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