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Introduction

(b) Preview of the ClearSpace-1
» Practical applications of the 6D pose estimation in many space missions.
The complicated background of aerial images will interfere with the
stability of the 6D pose estimator.
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(c) Main Idea of the Proposed CA-SpaceNet v

» This paper introduces counterfactual analysis to the 6D pose estimation
task in space and proposes the CA-SpaceNet framework.

» We quantize the CA-SpaceNet into a low-bit-width model and deploy a

part of the quantized network into a Processing-In-Memory chip on FPGA.
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(a) Overview of the proposed CA-SpaceNet (b) Diagram of training and inference phases
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» Factual Path: The factual path is designed to simulate the phenomenon of

background interference.

» Counterfactual Path: The idea of counterfactual analysis is to imagine a non
existent path, that is, to study the effect under the What If scenario.

» Pseudo Counterfactual Path: As its name implies, pseudo means that this

path is a fake path, which aims to imitate the counterfactual path.
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(c) Ideal Counterfactual Analysis (d) Real Counterfactual Analysis

» Simplified causal graphs of CA-
SpaceNet in four situation.

» These causal graphs consist of four
types of nodes: image node, feature
node, TDE node, and pose results node.

» Three quantization modes are set up:
- only quantizing the backbone,
- quantizing the backbone and FPN,
- quantizing all modules.

Experiments

» Quantitative Analysis on the Swisscube and SPEED Datasets

Comparison with SOTAs on Swisscube. Comparison with SOTAs on SPEED.

Method Near T Medwum T FarT AllT Method e, +e; |
SegD‘riven [39] 41.1 22.9 7.1 21.8 SLAB Baseline [3] 0.0626
Seg[gfﬁn—z [39] 526 45.4 294 432 vedro-fairspace [42] 0.0571
[5] 63.8 478 289  46.8
WDR [4] 65.2 48.7 319 479 WDRi [4] 0.0180
WDR* [4] 92.37 84.16 61.27  78.78 WDR* [4] 0.0400
CA-SpaceNet 91.01 86.32 61.72 79.39 CA-SpaceNet 0.0385

Results on 3 different quantization modes of 8-

bit and 3-bit CA-SpaceNet on SwissCube. Summary of #parameters

and storage size.

#Bits | Quan. Mode | ADI-0.1d T | OPs & FLOPs | Perc.(%)
, . 36.91 GOPs + . Format #Para. Model Size  Stor. Saving (%) T
’ 33.79 GFLOPs ' FP32 5129 M 205.17 MB 0.00
8-bit 51.29 M 51.29 MB 75.00
8 44 .51 GOPs + :
11 75.04 26.19 GFLOPs 62.96 3-bit 51.29 M 19.23 MB 90.63
70.47 GOPs +
= 7465 023 GFLOPs | 007 Measured latency on
: 510 3691 GOPs + | o), different hardware
' 33.79 GFLOPs '
3 . . 4451 GOPs + 6 06 Device Latency (ms) |
’ 26.19 GFLOPs ' ARM v8.2 64-bit CPU (Nvidia Xavier) 26.16
. 68 6 70 47 GOPs + 00 67 Intel Core i7-8700K CPU 10.25
’ 0.23 GFLOPs ' PIM Arch. on Ultra96v2 FPGA 5.99

> Visualization on Swisscube
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The CA-SpaceNet
significantly reduces
the background
iInterference and
generates robust
pose estimation
results.
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» Measured Latency Comparison: PIM v.s. CPU

Latency Comparison

Our real deployment of
the PIM Architecture on

the Ultra96v2 FPGA
achieves:

ARM v8.2 64-bit CPU
(Nvidia Xavier)

Processing-In-Memory Arch.
(3-bit PIM Accelerator on Ultra96v2 FPGA)

4.4X speedup than
ARM v8.2 CPU,

Latency | 26.16 ms 10.25 ms 5.99 ms &

Intel Core 17-8700K CPU

1.7X speedup than
Intel Core i7-8700K CPU.

Our deployment achieves speedup compared with ARM v8.2 CPU
and speedup compared with Intel Core 17-8700K CPU.

Conclusion

» In this paper, We propose CA-SpaceNet based on counterfactual anal-
ysis to weaken the interference of background from the mixed features.

» Experimental results on SwissCube and SPEED datasets show that the
proposed framework achieves robust performance.

» Further, we quantize the CA-SpaceNet into 3-bit and 8-bit and deploy part
of the quantized network to a neural network accelerator on FPGA.
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