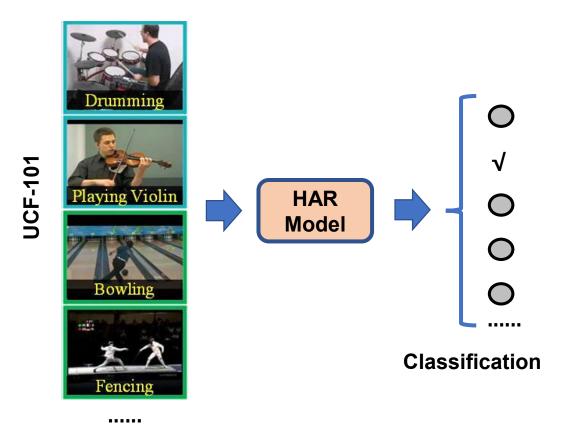
A Survey of Video-based Action Quality Assessment

Shunli Wang, Dingkang Yang, Peng Zhai, Qing Yu, Tao Suo, Zhan Sun, Ka Li, Lihua Zhang*

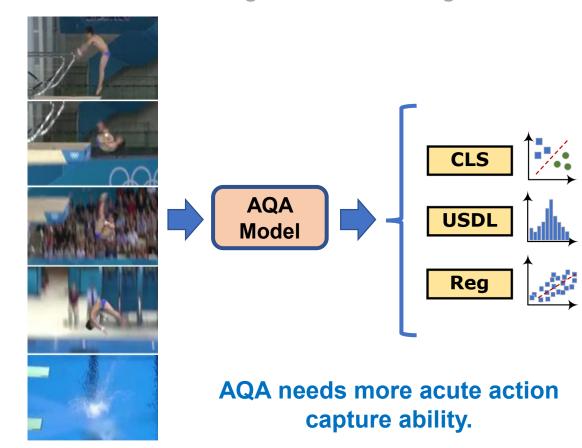
Mail: slwang19@fudan.edu.cn, lihuazhang@fudan.edu.cn

Fudan University, Shanghai, China


Outline

- 1. Introduction to AQA
- 2. Challenges
- 3. Datasets and Models
- 4. Conclusion

1. Introduction to AQA


Human Action Recognition (HAR)

Models in HAR require distinguishing subtle differences between different actions.

Action Quality Assessment (AQA)

Models in AQA require evaluating a specific action's advantages and disadvantages.

2. Challenges

Challenges in specific areas.

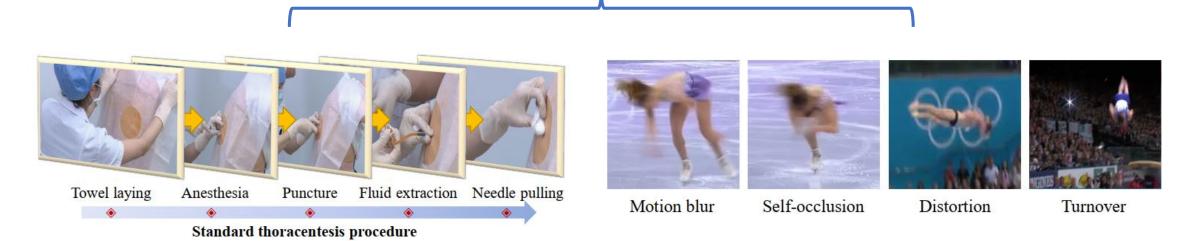


Fig. 1. Complexity of medical process: thoracentesis.

Efficiency

Common challenges.

Model Interpretability

View Occlusion

Fig. 2. The complexity of athletes' postures.

3. Datasets of AQA

Scene	Dataset	Publishing	Action class	Size	Label form	Website
Sports	MIT-Diving [5]	ECCV 2014	1	159	AQA score	https://www.csee.umbc.edu/ hpirsiav/quality.html
	MIT-Skating [5]	ECCV 2014	1	159	AQA score	https://www.csee.umbc.edu/ hpirsiav/quality.html
	UNLV Dive [6]	CVPRW 2017	1	370	AQA score	http://rtis.oit.unlv.edu/datasets.html
	UNLV Vault [6]	CVPRW 2017	1	176	AQA score	http://rtis.oit.unlv.edu/datasets.html
	BPAD [7]	ICCV 2017	1	48	AQA score	
	AQA-7 [8]	WACV 2019	7	1189	AQA score	http://rtis.oit.unlv.edu/datasets.html
					AQA score	-
	MTL-AQA [9]	WACV 2019	16	1412	Action class	https://github.com/ParitoshParmar/MTL-AQA
					Commentary	_
	FisV-5 [10]	TCSVT 2020	1	500	TES, PCS	https://github.com/loadder/MS_LSTM.git
	FR-FS [11]	ACM MM 2021	1	417	Action class	https://github.com/Shunli-Wang/TSA-Net
Medical Care	JIGSAWS [12]	MICCAI 2014	3	103	AQA score	http://cirl.lcsr.jhu.edu/jigsaws.
Daily Life	EPIC-Skills [13]	CVPR 2018	3	196	Pair-Rank	https://drive.google.com/file/d 1oX0dPM5IP638nB0YHt4L70aigIdqqpYr/
	BEST [14]	CVPR 2019	5	500	Pair-Rank	https://github.com/hazeld/rank-aware-attention-network
	Infant Grasp [15]	arXiv 2019	1	94	Pair-Rank	

Metrics

Mean square error

Classification accuracy

Spearman correlation coefficient

3. Models of AQA

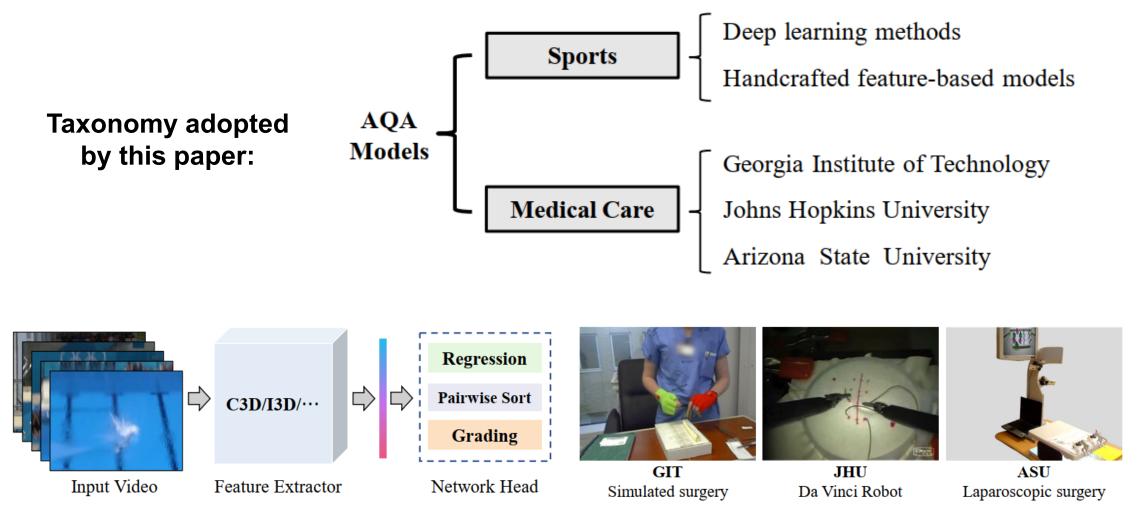
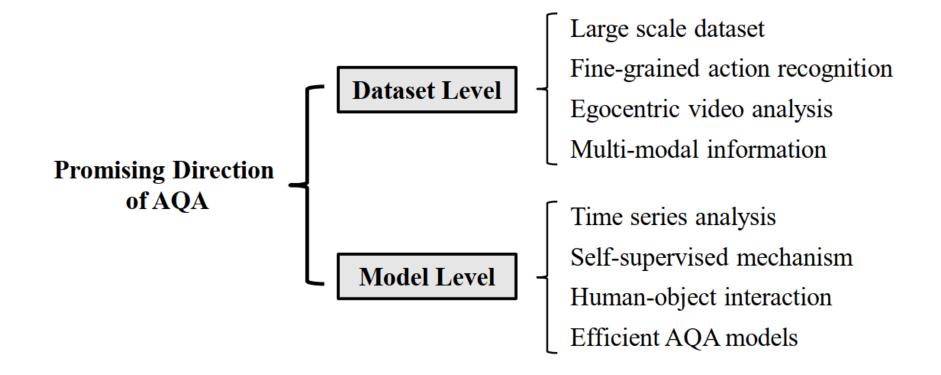


Fig. 4. Framework of AQA model based on deep learning.

Fig. 5. Dataset acquisition platforms of three three research series.

3. Models of AQA


TABLE II SUMMARY OF EXISTING AQA METHODS.

Ref.	Published	Dataset	Backbone	Network Head	Metrics	Website
[17]	RO-MAN 2016	Powerlifting	RSO Net	Feedback	Time Series Analysis	
[18]	ICIP 2018	AQA-7 JIGSAWS	P3D	Reg	Spearman Rank Cor.	https://github.com/YeTianJHU/diving-score
[19]	PCM 2018	UNLV-Diving UNLV-Vault MIT-Skate	C3D	Rank loss Reg	Spearman Rank Cor. Mean Euclidean Dis.	
[8]	WACV 2019	AQA-7	C3D	Reg	Spearman Rank Cor.	http://rtis.oit.unlv.edu/datasets.html
[9]	CVPR 2019	MTL-AQA	C3D	Caption Cls Reg	Spearman Rank Cor.	https://github.com/ParitoshParmar/MTL-AQA
[20]	ICCV 2019	AQA-7 JIGSAWS	I3D	Reg	Spearman Rank Cor.	
[10]	TCSVT 2020	FisV MIT-Skate	C3D	Reg	Spearman Rank Cor. Mean Square Error	https://github.com/loadder/MS_LSTM.git
[21]	CVPR 2020	AQA-7 MTL-AQA JIGSAWS	I3D	Reg	Spearman Rank Cor.	https://github.com/nzl-thu/MUSDL
[11]	ACM MM 2021	FR-FS AQA-7 MTL-AQA	I3D	Reg Cls	Spearman Rank Cor.	https://github.com/Shunli-Wang/TSA-Net
[7]	ICCV 2017	First-Person Basketball	Att. to scale	Pair-Rank	Ranking Acc.	
[13]	CVPR 2018	EPIC-Skills JIGSAWS	TSN	Pair-Rank	Ranking Acc.	
[14]	CVPR 2019	BEST EPIC-Skills	I3D	Pair-Rank	Ranking Acc.	https://github.com/hazeld/ rank-aware-attention-network
[15]	ICCVW 2019	Infant Grasp EPIC-Skills JIGSAWS	ResNet101	Pair-Rank	Ranking Acc.	

3. Summary of AQA models:

- From the perspective of development history, the AQA problem in medical care was put forward earlier than that in sports.
- From the perspective of feature extractor, most of the methods before 2014 constructed the AQA system through handcrafted features and traditional classifiers.
- From the perspective of the datasets, it is more difficult to construct datasets in medical care than sports.

4. Prospect of Future Work

Some promising research directions of AQA task.

4. Conclusion

- This paper summarizes the AQA datasets and methods according to the categorization methodology of sports and medical care.
- The challenges of AQA task in two fields are discussed in detail.
- We discuss the future development direction combined with recent studies.

Thanks! Q & A