

Introduction

- Background: 3D hand mesh reconstruction from monocular images is a crucial yet challenging task, as hands are often severely occluded by objects.
- Motivation: Previous works often have disregarded essential 2D hand pose information, which contains hand prior knowledge that is strongly correlated with occluded regions.
- Contributions: We propose a novel 3D hand mesh reconstruction network HandGCAT, that can fully exploit hand prior as compensation information to enhance occluded region features. experimental results show that our method achieves state-of-the-art performance on 3D hand mesh benchmarks that contain severe occlusions.

Performance **Results on HO3D Datasets**

Method	PA-MPJPE \downarrow	PA-MPJPE AUC \uparrow	$PA\text{-}MPVPE\downarrow$	PA-MPVPE AUC \uparrow
I2L-MeshNet [32] (CVPR'20)	1.12	0.775	1.39	0.722
Hasson et al. [33] (CVPR'20)	1.10	0.780	1.12	0.777
Hampali et al. [34] (CVPR'20)	1.07	0.788	1.06	0.790
METRO [29] (CVPR'21)	1.04	0.792	1.11	0.779
Liu et al. [35] (CVPR'21)	0.99	0.803	0.95	0.810
I2UV-HandNet [2] (ICCV'21)	0.99	0.804	1.01	0.799
ArtiBoost [36] (CVPR'22)	1.14	0.773	1.09	0.782
Keypoint Trans. [14] (CVPR'22)	1.08	0.786	-	-
MobRecon [37] (CVPR'22)	0.92	-	0.94	-
HandOccNet [20] (CVPR'22)	0.91	0.819	0.88	0.819
HandGCAT (Ours)	0.87	0.826	0.87	0.827

COMPARISON WITH STATE OF THE ART METHODS ON HOSD VS.						
Method	PA-MPJPE \downarrow	PA-MPJPE AUC \uparrow	PA-MPVPE ↓	PA-MPVPE AUC \uparrow	F@5	
ArtiBoost [36] (CVPR'22)	1.08	0.785	1.04	0.792	0.50	
Keypoint Trans. [14] (CVPR'22)	1.09	0.785	-	-	-	
HandOccNet [20] (CVPR'22)	1.07	0.786	1.04	0.791	0.47	
HandGCAT (Ours)	0.93	0.814	0.91	0.818	0.55	

Results on DexYCB Dataset

TABLE III				
COMPARISON WITH SOTA ON DEXYCB DATASET.				

Method	MPIPE	PA-MPIPE
Spurr et al. [40] (ECCV'20)	17.34	6.83
METRO [29] (CVPR'21)	15.24	6.99
Liu et al. [35] (CVPR'21)	15.28	6.58
HandOccNet [20] (CVPR'22)	14.04	5.80
HandGCAT (Ours)	13.76	5.60

HandGCAT: Occlusion-Robust 3D Hand Mesh Reconstruction from Monocular Images

Shuaibing Wang, Shunli Wang, Dingkang Yang, Mingcheng Li, Ziyun Qian, Liuzhen Su, Lihua Zhang

Method

Overview of the Proposed Method

The proposed HandGCAT consists of backbone, KGC, CAT, and regressor. Resnet-50 with FPN extracts image feature F_I . pose. CAT fuses F_P into F_I and thus imagines occluded regions.

• KGC captures hand prior knowledge F_P using GCNs from the 2D • Finally, the regressor reconstructs the 3D hand mesh.

Ablation Study

TABLE IV COMPARISON OF MODELS WITH VARIOUS KGC ARCHITECTURES ON HO3D v2.

KGC architectures	PA-MPJPE ↓	PA-MPVPE ↓	F@5 ↑	F@15 ↓
MLP	0.93	0.93	0.547	0.959
1-layer GCN	0.92	0.92	0.546	0.961
2-layer GCNs	0.90	0.89	0.570	0.961
3-layer GCNs	0.89	0.88	0.573	0.963
4-layer GCNs	0.87	0.87	0.584	0.963
5-layer GCNs	0.89	0.88	0.579	0.962

TABLE V COMPARISON OF MODELS WITH VARIOUS CAT ARCHITECTURES ON HO3D v2.

CAT architectures	PA-MPJPE ↓	PA-MPVPE \downarrow	F@5 ↑	F@15 ↑
Two Transformers	0.90	0.90	0.563	0.962
Single CAT block	0.89	0.88	0.574	0.962
Two CAT blocks	0.87	0.87	0.584	0.963
Three CAT blocks	0.88	0.87	0.583	0.963

Extensive

Academy for Engineering and Technology, Fudan University, Shanghai, China

Contact

Shuaibing Wang sbwang21@m.fudan.edu.cn